Tuesday, January 27, 2015

Recently Published: Aquatic Plant Dominance and BioBase

We are happy to report the first BioBase-focused paper finally published in the peer-reviewed literature:  "Combining hydroacoustic and point-intercept survey methods to assess aquatic plant species abundance patterns and community dominance." The paper is co-authored by Navico staff and researchers from Minnesota (Donna Dustin), Florida (Dean Jones), and North Carolina (Justin Nawrocki) and published in the January 2015 issue of the Journal of Aquatic Plant Management.  The paper describes a simple technique for combining aquatic plant species presence/absence information with detailed aquatic plant abundance metrics processed by BioBase [EcoSound] from Lowrance sonar logs to generate detailed information on what aquatic plant species are dominating a mapped lake.  The technique has the potential to greatly advance our understanding of the conditions that cause invasive aquatic plants to "take-over" (a colloquial term for dominate) lakes and provide an objective benchmark from which to evaluate aquatic plant management interventions.

Below is the abstract.  Please contact corresponding author Ray Valley (ray.valley@navico.com) if you are interested in a copy of the paper.

Many ecosystem goods and services are derived from aquatic plant–dominated environments and the abundance and composition of aquatic plant communities affects habitat, recreation, angling, aesthetics, and commerce. We describe standardized hydroacoustic methodology that complements species composition surveys and generates comprehensive aquatic plant abundance data with little additional assessment or analysis effort than is already put forth for species surveys. Using data from 22 lakes across the United States, collected by biologists with varying levels of expertise, we compare hydroacoustically derived biovolume with two other semiquantitative measures of whole-lake abundance (frequency of occurrence and ‘‘rake fullness’’). Although we documented some significant correlations between hydroacoustically derived biovolume and frequency and rake fullness, frequency or rake fullness was difficult to interpret biologically on a lakewide scale. We also describe a dominance index that incorporates both species composition and vegetation biovolume to evaluate the degree that a species dominates a local assemblage. We found that the extent of aquatic plant growth and invasive dominance was related to lake productivity with highest biovolume and dominance occurring in mesotrophic to eutrophic study lakes. Using both empirical and simulated data, we also found no significant differences between dominance calculated from a simple metric that gives equal weight to all species at a survey site and a metric that incorporated rake fullness for each species.

No comments:

Post a Comment

Please share your thoughts about this topic with us