Wednesday, September 26, 2012

Paradise Lake Improvement Board (MI)

Contour Innovations has recently adapted the ciBioBase platform and pricing options to support the mapping initiatives of local government units, home owner associations, and improvement boards.  One of the most recent additions to this project has been the Paradise Improvement Board in Carp Lake, MI (Lower Peninsula) and we're excited about it!*

The Paradise Lake Improvement Board (, through crowd sourcing and citizen science concepts, can now quickly determine the location and abundance of aquatic vegetation for management interventions and quantitative evaluation of the effectiveness of those techniques.   

There’s no technical expertise required!  Our biologists walked the volunteers of the PLIB through a demo account to demonstrate the key features for success with ciBioBase and discuss the recommended settings and collection techniques.    

 It's this simple

Led by board member Catherine Freebairn, the PLIB purchased 2 Lowrance™ HDS units that will be set up as portable units for the lake group and an unlimited upload subscription to  These units will be used to map Paradise Lake during dedicated mapping time as well as during pleasure cruises with passive collection.  With each minute on the water, the PLIB volunteers will be collecting vital statistics on aquatic vegetation, bathymetry, water temps, water volumes, and water clarity, all by hitting "log sonar" on their new HDS sonar units.  All of this data will be stored in their private online account. 

Aquatic biologist Ray Valley commented, "Protecting our lakes demands understanding of what lies beneath the surface and how its changing as a result of environmental changes and our responses to them."

Using the innovative ciBioBase System, the PLIB has started building a historical database of their aquatic environment to monitor vegetation abundance and other important water quality characteristics over time.   They can now quickly determine the location and abundance of submerged aquatic vegetation for management interventions and quantitative evaluations of effectiveness of those techniques.  This database is the catalyst for efficient management today and in the future.  By gathering  this data each time someone is on the lake, the Board can crowd source the mapping effort and share information with their service providers for collaborative and objective decision making.  

“The PLIB has always shown a substantial passion for their lake and we feel that their early adoption of our powerful technology will be rewarded on many fronts,” said Contour Innovations’ CEO Matt Johnson.  “It’s very easy to work with groups like the PLIB who see the big picture in lake management and monitoring and want to see results.  They develop close relationships with their service providers and home owners to work hand-in-hand in understanding the best opportunities to reach their goals.  This is the first time that groups like this can use acoustics for accurate vegetation mapping and ciBioBase fits perfectly within their strategy,” he added.  

The PLIB will be working with their service providers (who will also have access to uploads and maps) to make important management decisions, monitor changes, and objectively evaluate if management interventions are having their desired effects.  With the support of all involved, including Contour Innovations’ own aquatic biologists, the future looks bright for Paradise Lake and anyone that enjoys all it has to offer!
 An Example of a Lake Mapped with ciBioBase
 Aquatic Vegetation Displayed in % BV (water column occupied by plants)

If you're interested in finding out more about ciBioBase and how it can help your association or improvement district, please contact us and we'd be happy to set up a person demo for you with one of our biologists.  Please contact Jesse Amo for additional details:

For more information on the Paradise Lake Improvement Board please check out their website at

*Contour Innovations does not release personal information about our customers.  We obtained permission from the PLIB before this media release.

Friday, September 21, 2012

Precision Management-Time to Quantify

Lake Harriet Monitoring Before and After Harvester. . .

A multitude of factors impact the health of aquatic systems creating a need to monitor lakes’ “vital signs”.  In the same way it is expected that a medical doctor will do more than glance at a patient and say: “you look fine” the same is needed for our lakes.  A number of different vital signs are necessary to give a precise assessment of human health and our aquatic systems are no different, they are complex biological systems.  ciBioBase provides many “unchecked” parameters that have not been assessed until now in an automated processing system.  Two trips on a small section of Lake Harriet in Minneapolis collecting “vital signs data” have already told a story about big changes in the aquatic community.  What more can we learn about this complex ecosystem by simply monitoring with ciBioBase on an ongoing basis?

A data collection trip with ciBioBase in late June on Lake Harriet revealed what you might expect from an unseasonably warm spring in a lake infested with Eurasian watermilfoil (EWM).  Aquatic plant growth was several weeks ahead of schedule with EWM dominating the sample area on north shore and already being matted on the surface.  The majority of near-shore areas sampled exhibited near 100 % EWM biovolume (% water column occupied).  In fact, in the far east and west reaches of the sample area our survey-boat was skirting matted EWM too dense to navigate through.  Wherever vegetation occurred (percent area coverage) on the June 18th survey the biovolume average was very high, due to it being composed primarily of EWM (average of 54.4%).  



In late August a comparison trip was completed, navigating the same transect line from the June trip using ciBioBase following the Lowrance HDS track overlay on the unit.  A striking feature noticed shortly after getting on the water was…..Where was all the topped-out vegetation?  The transect sampled on June 18th skirted topped-out EWM, but on August 22nd no topped-out vegetation occurred in the same sampling area.  This excerpt from the Star Tribune written by Bill McAuliffe on June 10th explains: “The Minneapolis Park Board's milfoil harvest began with a single mower.  . The harvesting each year generally requires at least two passes through each lake. Cedar Lake was scheduled for mowing Friday. After that, Lake Harriet is on the schedule.” (View the article by clicking here).  That would explain the drop in average biovolume in vegetated areas from 54.4% to 16% and overall average biovolume for the entire sampled area from 28.3 to 5.1%.


*Automated Reports Generated for Each Trip Uploaded to ciBioBase

ciBioBase not only displays that the average biovolume in vegetated areas for this study site dropped from 54.4% to 16% and overall average biovolume for the entire sampled area from 28.3 to 5.1%, but it also outlines vegetation distribution.  Spatial characteristics such as the shift from about 30% of the sampled area having a biovolume of  >80% to 0.34% of the sampled area having a biovolume >80% after the EWM harvest are also a part of the ciBioBase data output.

ciBioBase has enabled users to precisely compare changes in biovolume and spatial distribution of vegetation; pinpointing changes and quantifying their outputs.  This means precision monitoring and management using quantifiable target goals while leveraging objective “before and after” monitoring data that is easily collected, processed, and viewed with the ciBioBase system.

Knowing precisely “where and how much” are critical components to knowing if management plans are effective.  Another excerpt from Bill McAuliffe’s Star Tribune article states: “The Lake Minnetonka Conservation District launched its two mowers Thursday, about on schedule because it uses school teachers to run them, said Judd Harper, who manages the district's milfoil removal. But weed growth on the lake is "a lot worse than it was last year," Harper said.”  ciBioBase provides numbers behind “a lot worse”.

Using the ciBioBase system and historical database comparison, it is now possible to quantitatively identify year to year and other temporal trends.  Managers can now implement corresponding management based on sound scientific data and quantitative metrics.  ciBioBase is the key to precision management!


* %BV (% of the water column filled with plants)



ciBioBase removes the time and labor required to create aquatic maps! The System was engineered to provide automated cloud based bathymetric and aquatic vegetation mapping and historical trend tools for aquatic habitat analysis. ciBioBase leverages log file formats recorded to SD cards using today’s Lowrance™ brand depth finders and chart plotters. Data you collect while on the water is uploaded to an online account where it is processed by our servers automatically! We rely on automation to make vegetation mapping cost effective by reducing the technical skills, staff, and hours to produce vegetation abundance maps from raw sonar collection. With the human element gone, you get accurate and objective mapping at lightening speeds! The result is a uniform and objective output all over the world!

Monday, September 17, 2012

What's this Kriging Business?!

Thanks to advances in Geographic Information Systems (GIS) computing technology, evaluating changes to lake bottoms over time has gotten much easier!  Prior to GIS, biologists and surveyors would go through great pains to ensure that repeated data collection in study areas of interest would precisely fall on the same area or transect.  If this condition was not met, data would have to be thrown out because biologists could never be sure that the difference seen between two time periods was real, an artifact of sampling a different area, or a product of sampling in a different way.  Consequently, efforts from multiple groups collecting similar data in the same system but in a slightly different way could not be leveraged.  This is an unfortunate missed opportunity that ciBioBase uniquely handles.

First, ciBioBase uniformly interprets acoustic signals and the output is the same regardless of the skill level of the individual collecting the data.  Second, ciBioBase employs kriging to create a statistically robust uniform map output that figuratively turns Survey 1 by Bob Smith from an orange into an apple and Survey 2 by Amy Johnson in the same area from a grapefruit into an apple.  This is unique to kriging which is a geostatistical procedure.  All other standard interpolation methods are simply 3D representations of the input data and each map will look different depending on the precise location of your survey points.  Only kriging turns different fruits into apples.

Kriging takes irregularly spaced data points and creates a smooth GIS map (also called a raster grid) based on the geostatistical properties of the input data.  Generally, points close together are more related than points farther away but the precise relationship can vary from location to location.  Kriging uses the actual statistical relationship of neighboring data points to make predictions in unsampled locations.  Other popular methods such as Inverse-Distance-Weighted (IDW) interpolation make simple assumptions of relatedness and does not use actual data to influence predictions in unsampled locations.

Through its use of kriging, ciBioBase removes the concern of precisely following the same path from survey to survey; which is very difficult to do on moving water even for the most seasoned surveyor.  Further this process can leverage passive data collection while doing other survey work, fishing, or simply enjoying a pleasure cruise and turn it into useful information for water resource management and protection (Figures 1-4).

Figure 1. Fisheries biologists can collect fish habitat data passively while conducting electrofishing fish surveys.
Figure 2. Passively collect depth and vegetation abundance data while enjoying a pleasure cruise with the kids or fishing.
Figure 3. Result of merged ciBioBase trip path data from passive data collection (above) resulting in a uniform vegetation map (below).
Figure 4. Zoomed in area of Figure 4 showing merged trip paths (above) and the uniform map output (below).  The heat map represents density of aquatic vegetation.  Blue is no vegetation growth and red represents vegetation growth that is all the way to the water surface.

Revised ciBioBase automated summary reports 
At 15 pings per second coming out of Lowrance HDS depth finders, data quickly add up and without any help, users can be drowning in data and be worse off than when they started.  This issue was the topic of a previous blog post (What to do with all this data?). ciBioBase handles the data deluge by using kriging and creating automated summary reports.  Our recently revised summary reports now include statistics based on coordinate point data (i.e., your trip path) and data from the bathymetric and vegetation grids created by kriging (Figure 5).  When survey data collection is structured with straight transects of a uniform speed (as in the case with Figure 5), the differences between the point and grid summaries is small.

Figure 5. ciBioBase automated summary report excerpt showing both coordinate point and kriging grid summaries
In circumstances where lake managers are primarily interested in monitoring vegetation along standard transects, the point summaries may suit them best since the points are often uniformly spaced a part and along a straight path (Figure 6).
Figure 6. Example automated summary report showing results from a standard transect survey.  Because data lie along straight paths and are mostly uniformly spaced, point data summaries should be used.

However, if you idle for long periods time collecting samples on the lake or trying to entice finicky fish to bite, many data points amass in one location (Figure 6) and can bias the statistics from the point data (Figure 7).

Figure 7.  Vegetation point data along trip path (blue) exported from ciBioBase and displayed in GIS at two zoom levels overlayed on uniform kriging grid data (blue-red).  Notice the accumulation of data points over areas where the boat is only slightly moving.  Kriging creates a uniform grid of points no matter how the data are collected.
In the situation above, the differences between the point and grid data are larger and the grid data becomes more important to use for formal statistical summaries and reports (Figure 8).  The upshot is when in doubt, use the grid statistics for your data summaries.

Figure 8. Differences between point and grid statistical summaries when data along trip path are not uniform. In these situations, use the statistics from the uniform grid for report summaries and lake management decision making.

A better use of your time
By automating the complexities of creating maps, ciBioBase users do not need to spend precious time and money dealing with manual data collection with survey rods and hand held GPS’s, entering data with a pencil onto a datasheet, and then figuring out how to display the data in GIS and run Geostatistics models to get a map.  Before BioBase’s launch in 2011, bottom and vegetation mapping was a costly endeavor and often just wasn’t done.  ciBioBase is changing the game and is empowering all citizens regardless of technical expertise with the ability to see what is below the water’s surface, how it’s changing over time, and how to best manage that change.

Friday, September 7, 2012

v2.0 Reports Are Live!

Despite the amazing mapping and visualization tools of BioBase and the questions they spark and help answer, the numbers and old fashioned summary data reports are often tough to beat.  Indeed, many of our users have found our automated summary v1.0 Report of BioBase outputs very helpful for objectively evaluating their aquatic plant management activities.  However, the focus of the version 1 Report was to produce a simple and uniform summary of data collected along users’ trip paths, which often occurred in the form of linear transects.  Sometimes the v1.0 Reports didn't support an apples to apples comparison.

As our user base expands into system mapping and crowd-sourcing efforts, where trip paths often resemble a bowl of spaghetti, leveraging the power of kriging interpolation becomes even more important.  As such, we've just released new automated summary Reporting (v2.0) that will publish both point (i.e., for classic transects) and grid (passive mapping or crowd-sourcing) summary statistics.  The version 2 Reports also output biovolume details in the vegetated areas only as well as within the complete survey zone.   Further, you will find statistics grouped by areas of interest and not only a summary of all data within the merged trips but a uniform summary of each transect that make up the merge!   They're pretty slick!

Our team has used their previous work experience and interaction with our users to develop reports that are relevant to a wide range of users including lake associations, lake service providers, agency biologists, or university researchers.  We hope you find these reports useful for your work.  Please let us know if you have any questions about how these Reports and data can be used.

You can view the full interactive report with collapsible sections and zoom by clicking here: REPORT SAMPLE   Each report gets a unique URL that can be emailed to customers,  or collaborators.

  Get the v2.0 Reports For Your Past Trips!

This is another great example of how a new feature can be associated to each of your previous uploads.  To get the new v2.0 Report for your previously uploaded trips, click on the Trip Reprocessing tab of the interactive viewer and select "Report" before clicking reprocess.   Try a merged trip first and let us know what you think!  Not a ciBioBase customer yet and don't have any trips to reprocess?? Why not?  Give us a call and you can join the revolution!